
Breaking Passwords and Overcoming Encryption

Breaking Passwords

Recovering encrypted evidence and accessing password-protected data

Types of Protection

- Password locks access
 - Instant recovery possible
- Weak encryption
 - Instant recovery with Thunder Tables
- Strong encryption: passwords must be enumerated
 - List of common passwords
 - Smart dictionary attacks and mutations
 - GPU acceleration
 - Zero-overhead distributed computing

Some Passwords are Weaker Than Others

Instant Password Recovery

- Microsoft Office up to XP/2003
- Intuit Quicken (old versions)
- Intuit QuickBooks
- Adobe Acrobat PDF (protection passwords)
- Microsoft Office (protection passwords)
- Browsers: IE, Edge, Firefox, Opera, Safari, Chrome
- Instant messengers (over 80)

- Mail clients (over 15)
- Windows logon passwords
- Microsoft SQL
- Sage products (ACT!, PeachTree Accounting)
- Lotus Smart Suite
- WordPerfect Office

Some Passwords are Weaker Than Others

Quickly Recoverable >500,000 p/s

- Windows LM and NTLM
- MD5, sha1,sha256,sha512
- Microsoft SQL Server, SQL CE
- PFX/P12 certificates

- macOS keychain
- ZIP archives (classic encryption)
- iOS 10.0 backups

Some Passwords are Just Normal

Around 50,000 to 100,000 p/s

- WPA/WPA2 PSK
- IBM Notes (some versions)
- ZIP (AES)

- iTines backups (iOS 4-9, 10.1)
- Microsoft Office 2007/2010
- Hancell

Some Passwords are Stronger Than Others

Slower than 50,000 p/s

- Microsoft Office 2013/2016
- RAR and 7zip archives
- macOS logon password

- TrueCrypt, FileVault2, BitLocker
- iOS 10.2+ backups

Some Passwords are Stronger Than Others

Varies depending on version/algorithm

- OpenOffice
- IBM/Lotus Notes
- PGP

- Domain Cached Credentials
- Password managers

MS Office 2007 / 2010 / 2013

CPU: Intel Xeon E5-2603 GPU: AMD Radeon R9 290

One instance

	Per second	Per hour
MS Office 2007	46.200	166.320.000
MS Office 2010	24.500	88.200.000
MS Office 2013	2.900	1.044.000

MS Office 2007 / 2010 / 2013

CPU: Intel Xeon E5-2603 GPU: AMD Radeon R9 290

10 instances

	Per second	Per hour
MS Office 2007	462.000	1.663.200.000
MS Office 2010	245.000	882.000.000
MS Office 2013	29.000	10.440.000

MS Office 2007 / 2010 / 2013

10 instances

Is brute-force enough to break passwords in reasonable time?

	Per second	Per hour
MS Office 2007	462.000	1.663.200.000
MS Office 2010	245.000	882.000.000
MS Office 2013	29.000	10.440.000

MS Office 2013

Very simple: 5 characters (lower case letters and numbers only)

 $36^5 = 60,466,176$ possible passwords

Max. time: 4.7 hours

MS Office 2013

Simple: 6 characters (lower and upper case letters and numbers only)

62⁶= 56,800,235,584 possible passwords

Max. time: 4500 hours (6 months)

MS Office 2013

Average: 7 characters (upper and lower case letters and numbers)

 62^7 = 3,521,614,606,208 possible passwords

Max. time:

MS Office 2013

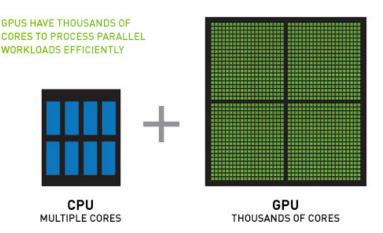
Average: 7 characters (upper and lower case letters and numbers)

 62^7 = 3,521,614,606,208 possible passwords

Max. time: 277.292 hours (31.5 years)

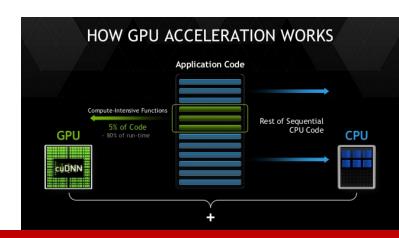
MS Office 2013

Slightly stronger than average: 8 characters (upper and lower case letters, special characters and numbers combined)

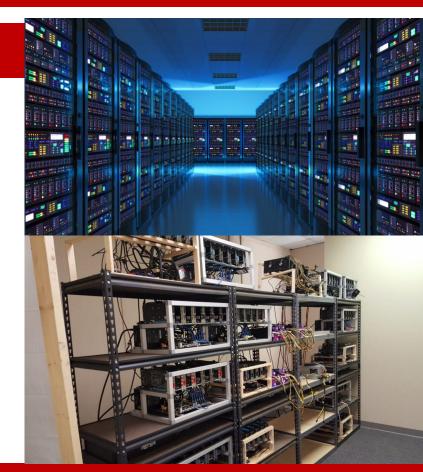

94⁸= 6,095,689,385,410,816 possible passwords

Max. time: **55.000 years**

STRONGER


GPU Acceleration

- Gaming video cards output 60 fps of lifelike 3D rendering
- Video cards are used for mining crypto-currencies
- They are faster than the CPU
 - Much faster
 - Getting faster every year
 - Intel i7: 15% performance increase between adjacent generations in 1 year
 - NVIDIA GeForce: 70% performance increase in 1 year (within the same family)



GPU Acceleration

- Always use GPU units to speed up recovery
- Real-world gain vs. a high-end quad-core i7:
 - 50x acceleration with a single video card
 - 200x acceleration with 4 video cards
 - Unlimited number of GPUs supported

GPU Farms

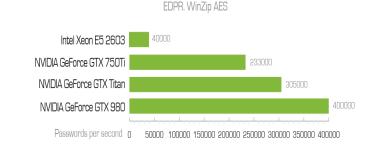
GPU Acceleration

To do:

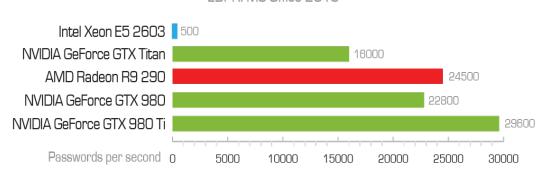
- Choose products with GPU acceleration
- Install multiple GPUs
- A single GPU reduces password recovery times 50 to 200 times
- Lifehack: use multiple video cards of different makes, models and generations (including AMD and NVIDIA boards in a single PC)

Best practice:

- Invest in a GPU, not CPU
- Buy additional cards, keep old ones, use them together for maximum benefit

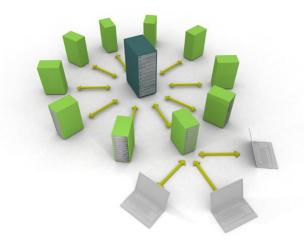


GPU Acceleration


Real-world benchmarks

- Office 2010: 500 pwd/s (CPU) vs. 22800 (GPU)
- WinZip AES: 40,000 vs. 400,000

Intel Xeon E5 2603 vs. NVIDIA GeForce GTX 980



FDPR, MS Office 2010.

Distributed Computing

- Sometimes, a single PC is not enough
- Attack passwords over the network
- Multiple computers (each with GPU units) attack the same password in parallel
- Real-world benefit depends on scalability implementation

Distributed Computing

To do:

- Use distributed attacks
- Zero scalability overhead: 10,000 computers will break the password 10,000 times faster than a single PC

Best practice:

- A single PC with a GPU is better than a network of 50 computers
- A network of computers with GPUs achieve performance in teraflops range

Breaking documents password

MS Office 2013

Slightly stronger than average: 8 characters (upper and lower case letters, special characters and numbers combined)

94⁸= 6,095,689,385,410,816 possible passwords

Max. time: 55.000 years: Raw power is not enough

SMARTER

There is a catch!

About 60% of passwords chosen by AVERAGE users

can be usually broken within first two hours*!

*) 10 instances, using GPU accelerator

There is a catch!

About 30% of passwords choosen by AVERAGE users can be usually broken within first two hours*!

In minutes!!!

*) 10 instances, using GPU accelerator

MS Office 2013

Average: 7 characters (upper and lower case letters and numbers)

 62^7 = 3,521,614,606,208 possible passwords

277.292 hours (31.5 years) 2 hours In minutes

How Is It Possible?

Main rule: most passwords are re-used

The 50 Most Used Passwords

- 1. 123456
- 2. password
- 3. **12345678**
- 4. qwerty
- 5. 123456789
- 6. 12345
- 7. 1234
- 8. 111111
- 9. 1234567
- 10. dragon

- 11, 123123
- 12. baseball
- 13. abc123
- 13. abc123
- 14. football
- 15. monkey
- 16. letmein
- 17. shadow
- 18. master
- 19. 696969
- 20. michael

- 21. mustano
- 22.666666
- 23. qwertyuiop
- 24. 12332
- 25. 1234...890
- 26. p*s*
- 27. superma
- 28. 270
- 29. **65432**
- 30. 1qaz2ws

- 31, 7777777
- 32. f*cky*u
- 33. **qazwsx**
- 34. jordan
- 35. jennifer
- 36. **123qwe**
- 37. 121212
- 38. killer
- 39. trustno1
- 40. hunter

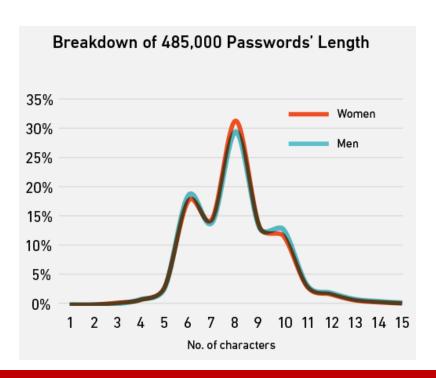
- 41. harley
- 42. zxcvbnm
- 43. asdfgh
- 44. buster
- 45. andrew
- 46. batman
- 47. soccer
- 48. tigger
- 49. charlie
- 50. robert

Common Passwords

- Top 25 passwords represent 2.2% of all passwords used
- Top 500 passwords represent 9.1% of all passwords used
- A dictionary of 10,000 most common passwords helps solve up to 30% cases in almost no time
- 59% of consumers reuse passwords

Common Passwords

- Best practice:
 - Try breaking easier files first to obtain existing passwords
 - Use preliminary attacks to try common passwords
 - Use Internet Password Breaker to extract existing passwords


What Users think?

"I'll Add a Number to Make it More Secure."

	Most Used Numbers (0-99) at the End of Passwords		L	Least Used Numbers (0-99) at the End of Passwords		
1.	examplepassword1	23.84%	100.	examplepassword39	0.15%	
2.	examplepassword2	6.72%	99.	examplepassword49	0.16%	
3.	examplepassword3	3.86%	98.	examplepassword60	0.17%	
4.	examplepassword12	3.55%	97.	examplepassword38	0.18%	
5.	examplepassword7	3.54%	96.	examplepassword37	0.18%	
6.	examplepassword5	3.35%	95.	examplepassword41	0.18%	
7.	examplepassword4	3.19%	94.	examplepassword61	0.18%	
8.	examplepassword6	3.06%	93.	examplepassword46	0.19%	
9.	examplepassword9	2.91%	92.	examplepassword53	0.19%	
10.	examplepassword8	2.89%	91.	examplepassword48	0.19%	

Evaluating Password Entropy

How many characters make a password secure?

Smart Dictionary Attacks

- Most consumers choose passwords based on dictionary words
 - Sometimes appending a number
- Security policies rarely block dictionary-based passwords
 - Enforcing minimum length and use of numbers/special characters
- For strong protection (e.g. Office 2010-2016), dictionary is the only way to go
- In real world, dictionary attacks have ~50% success rate

Smart Dictionary Attacks

To do:

- Use pre-installed dictionaries
- · Dictionary attacks with pre-configured mutations come first
- Followed by brute-force attack

Best practice:

- Build your own custom dictionary for each individual case We suggest Proactive System Password Recovery
- Don't waste too much time with standard dictionaries of common words.
 Using a smaller, targeted dictionary works much better
- Use English and native words
- Allow <u>reasonable</u> mutations
 Overshooting mutations may defeat the purpose

Breaking documents password

Common passwords

Most Used Base Phrase (4+ characters)

- 1. password
- 2. qwerty
- 3. qwer
- 4. dragon
- 5. qazwsx
- 6. alex
- 7. love
- 8. monkey
- 9. master
- 10. shadow

Most Used Noun (1,000 most common)

- 1 master
- 2. football
- 3. killer
- 4. angel
- 5. summer
- 6. money
- 7. freedom
- access
- 9. green
- 10. silver

Most Used Verb (1,000 most common)

- 1. welcome
- 2. enter
- 3. please
- 4. flash
- 5. chase
- 6. catch
- 7. express
- 8. enjoy
- 9. remember
- 10. rescue

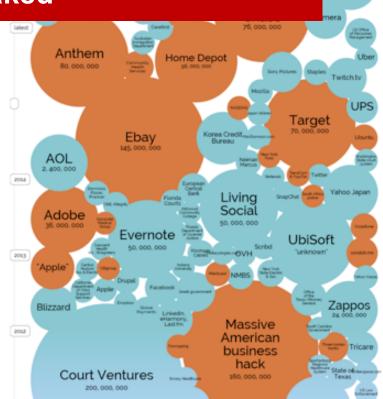
Most Used Colors (Used with numbers)

- 1. red
- 2. blue
- 3. black
- 4. green
- 5. white
- 6. pink
- 7. orange
- 8. brown
- 9. purple
- 10. yellow

Social Engineering

Passwords from various sources leaked

2012


Court Ventures (200 mil), Massive American Business Hack (160 mil)

2014

eBay (145 mil), Target (70 mil), Home Depot (36 mil), Anthem (80 mil)

2015

JP Morgan Chase (76 mil)

ElcomSoft.com

Social Engineering

Top 10.000.000 Real Passwords

What we analyzed? 10.000.000 passwords collected by Mark Burnett

https://archive.org/details/10MillionPasswords

All passwords are collected from 2011 to present days

IT security analyst Utah, USA

Social engineering

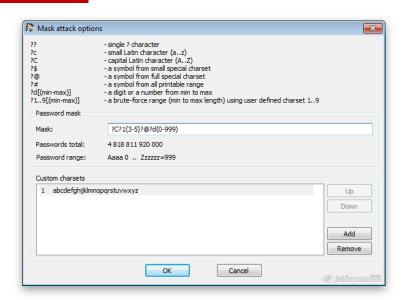
A 98.8% recovery rate during the first minute?

Unfortunately, today a simple dictionary attack using the Top-10,000 passwords list brings modest results (about 30% success rate at best)

In order to achieve a higher success rate, we used our extensive knowledge and experience with desktop-based password recovery tools (we sold several hundred thousand of those during the past few years).

Social Engineering

Mutations and dictionary attack. Best strategy.

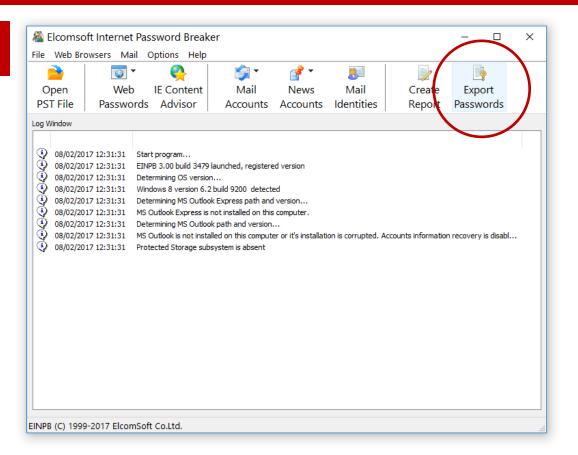

After extensive research and nearly half year of testing, we settled on the following attacks:

- Top-100 passwords. This dictionary attack uses the original Top-100 Passwords list including variations (appending up to 2 numbers and trying single-word and twoword combinations).
- **Top-10,000 passwords.** This attack with the dictionary containing top-10,000 passwords including simple variations (one number appended to the end of the password).

Breaking Passwords

Advanced Attacks

- If there is a common pattern to user's passwords
- If there is a password security policy in place
 - Advanced attacks can target that pattern
- There are common mutation rules
- Dates and l33t language
- Mirror, rotate, duplicate, reverse, truncate, adjust character cases and more: ~40 customizable rules



Step 1

- Acquire passwords that can be recovered instantly or in reasonable time at first
- Use Elcomsoft Internet Password Breaker to instantly extract passwords
- Try this passwords list on time-consuming documents (MS Office 2010-2013, for example)

Step 1

Use Elcomsoft Internet
 Password Breaker to
 instantly extract passwords

Step 2

Analyze known user passwords and use simple mutations or mask method, if known passwords are build on some rules, of course

Example:

AIEx1234
aLeX4321
1Alex1
E1com\$oft

Step 3

Use numbers-only brute-force. It will take split seconds

Step 4

Use Top-100/10.000 passwords dictionary without mutations (at first)

Step 5

Use language specific passwords dictionary without mutations

- * We separated common passwords list into language specific dictionaries. For example english, german, russian, etc.
- * Basic dictionaries are included in the program distribution. Additional dictionaries are available for purchase and immediate download.

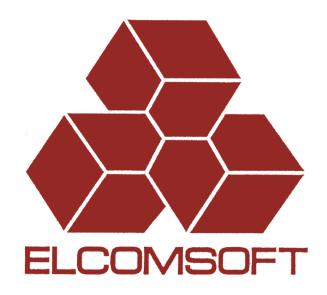
Step 6

Use brute-force with reasonable time settings (dictionary with mutations)

Step 7

Use brute-force ⊗

Breaking Passwords


QUESTIONS?

Breaking Passwords

Breaking Passwords Breaking Passwords and Overcoming Encryption

(c) ElcomSoft 2017 Vladimir Katalov, ElcomSoft Co. Ltd.

Facebook: ElcomSoft Twitter: @elcomsoft

